L-functions and Random Matrices
نویسنده
چکیده
In 1972 H. L. Montgomery announced a remarkable connection between the distribution of the zeros of the Riemann zeta-function and the distribution of eigenvalues of large random Hermitian matrices. Since then a number of startling developments have occurred making this connection more profound. In particular, random matrix theory has been found to be an extremely useful predictive tool in the theory of L-functions. In this article we will try to explain these recent developments and indicate some directions for future investigations.
منابع مشابه
Random Polynomials, Random Matrices and L-functions
We show that the Circular Orthogonal Ensemble of random matrices arises naturally from a family of random polynomials. This sheds light on the appearance of random matrix statistics in the zeros of the Riemann zeta-function.
متن کاملRandom Polynomials, Random Matrices, and L-functions, Ii
We show that the Circular Orthogonal Ensemble of random matrices arises naturally from a family of random polynomials. This sheds light on the appearance of random matrix statistics in the zeros of the Riemann zeta-function.
متن کاملNumerical solution of delay differential equations via operational matrices of hybrid of block-pulse functions and Bernstein polynomials
In this paper, we introduce hybrid of block-pulse functions and Bernstein polynomials and derive operational matrices of integration, dual, differentiation, product and delay of these hybrid functions by a general procedure that can be used for other polynomials or orthogonal functions. Then, we utilize them to solve delay differential equations and time-delay system. The method is based upon e...
متن کاملNumber Theory 19 Statistics for low - lying zeros of Hecke L - functions in the level aspect
We would like to provide evidence for the fact that zeros of L-functions seem to behave statistically as eigenvalues of random matrices of large rank throughout the instance of Hecke L-functions. First, we remind you of Iwaniec-Luo-Sarnak’s results on one-level densities for low-lying zeros of Hecke L-functions (see [5]) and Katz-Sarnak’s results on one-level densities for eigenvalues of orthog...
متن کاملar X iv : m at h - ph / 0 50 90 44 v 2 1 1 Ja n 20 06 RANDOM POLYNOMIALS , RANDOM MATRICES AND L - FUNCTIONS
We show that the Circular Orthogonal Ensemble of random matrices arises naturally from a family of random polynomials. This sheds light on the appearance of random matrix statistics in the zeros of the Riemann zeta-function.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001